Skip to main content

Science and Technology Partnerships and Outreach

Below is a comprehensive list of articles, events, projects, references and research related content that is specific to the organization described above. Use the filter to narrow the results further or please visit Science and Technology Partnerships and Outreach for more information.

Ignore Organization?
Off

Filter Results

  • Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance
    Intellectual Property Available to License
    US Patent 8,148,293B2; US Patent 8,143,189B2
    • Subnanometer and nanometer catalysts, method for preparing size-selected catalysts (ANL-IN-07-067)

    The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes.

    Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

    Subnanometer and nanometer catalysts, method for preparing size-selected catalysts (ANL-IN-07-067)

    View patent details

    Presented here is a novel application of size-preselected metal-containing clusters under realistic high temperature catalytic conditions. More specifically, the invention produces and utilizes size selected sub-nanometer metal cluster-based catalysts and up to several nm size-selected nanoparticles for chemical conversions such as epoxidation and dehydrogenation.

    Subnanometer and nanometer catalysts, method for preparing size-selected catalysts (ANL-IN-07-067B)

    View patent details

    The invention provides a catalytic electrode for converting molecules, the electrode comprising a predetermined number of single catalytic sites supported on a substrate. Also provided is a method for oxidizing water comprising contacting the water with size selected catalyst clusters. The invention also provides a method for reducing an oxidized moiety, the method comprising contacting the moiety with size selected catalyst clusters at a predetermined voltage potential.

  • Disclosed herein are methods for extracting a kerogen-based product from subsurface shale formations
    Intellectual Property Available to License
    US Patent 9,181,467
    • Preparation and use of nano-catalysts for in-situ reaction with kerogen (ANL-IN-11-104)

    The methods utilize in-situ reaction of kerogen involving liquid phase chemistry at ambient temperatures at pressures for the subsurface shale formation. These methods rely on chemically modifying the shale-bound kerogen to render it mobile using metal particulate catalysts. In the methods disclosed herein a fluid comprising metal is provided to the subsurface shale formation comprising kerogen in an inorganic matrix. A reducing agent is provided to the subsurface shale formation. The kerogen is converted by contacting the kerogen with a metal particulate catalyst formed from the metal; and a mobile kerogen-based product is formed. At least a portion of the mobile kerogen-based product is recovered. The kerogen-derived product can be upgraded to provide commercial products.

     

  • A method of preparing a nitrogen containing electrode catalyst
    Intellectual Property Available to License
    US Patent 8,835,343; US Patent 10,305,114
    • Non-platinum group metal electrocatalysts using metal organic framework materials and method of preparation (ANL-IN-09-069)

    A method of preparing a nitrogen containing electrode catalyst by converting a high surface area metal-organic framework (MOF) material free of platinum group metals that includes a transition metal, an organic ligand, and an organic solvent via a high temperature thermal treatment to form catalytic active sites in the MOF. At least a portion of the contained organic solvent may be replaced with a nitrogen containing organic solvent or an organometallic compound or a transition metal salt to enhance catalytic performance. The electrode catalysts may be used in various electrochemical systems, including a proton exchange membrane fuel cell.

     

  • A nanofibrous catalyst and method of manufacture
    Intellectual Property Available to License
    US Patent 9,350,026; US Patent Application: 15/144,650
    • Nanofibrous electrocatalysts (ANL-IN-12-063)

    A precursor solution of a transition metal based material is formed into a plurality of interconnected nanofibers by electro-spinning the precursor solution with the nanofibers converted to a catalytically active material by a heat treatment. Selected subsequent treatments can enhance catalytic activity.

     

  • A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure
    Intellectual Property Available to License
    US Patent 8,741,800 and US Patent 9,937,490
    • Hydrothermal performance of catalyst supports (ANL-IN-09-085 and ANL-IN-09-085B)

    The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.