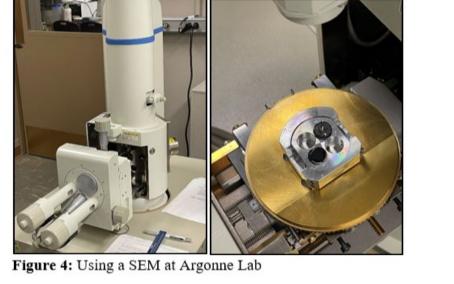
STUDY OF THE ADSORPTION OF CO, BY CARBON FILTERS

Olivia DePaola¹, Nico Moran¹, Anna Noga¹, Samantha Padal¹, Ghada Ali¹, Sandrine Clairardin¹, and Dr. Luca Rebuffi² ¹Romeoville High School, IL. 60446 ²Argonne National Laboratory, IL 60439

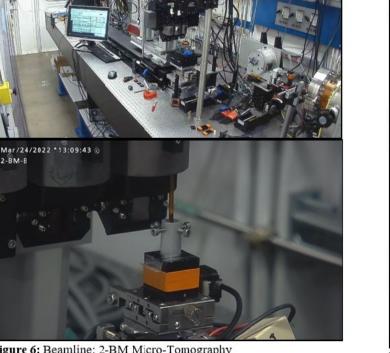
A	BS1	IRA	СТ

CO₂ resulting from coal burning causes severe health risks due to the environmental contamination, including, but not limited to, cardiovascular and respiratory diseases ^[1]. A coal burning facility produces different gaseous pollutants like N₂O and SO_2 , but we have determined carbon dioxide as the most detrimental to the perspicuity of individuals lungs and respiratory systems. In other studies, coal fly ash contains unburnt organic materials such as carbon nanotubes, that may be recovered and used in many industries^[2]. The filtration device is composed of two chambers with a CO₂ sensor in each. When using our filtration device, we noticed a common pattern of the concentration of CO₂ in the polluted and the purified chambers for both types of filters. The filters were observed using a scanning electron microscope, and beamline 2-BM-XSD micro tomography.

MOTIVATION


- Our school is located in close proximity to a coal-burning power plant.
- CO₂ resulting from coal burning causes severe health risks to cardiovascular and respiratory diseases. • We have determined carbon dioxide as the most detrimental to the perspicuity of individuals lungs and respiratory systems

Filters: Carbon-water mixture was homogenized, filtered, and placed on gauze membrane (Figure 1). The gauze filters were placed in a water bath to desorb them from CO_2 . The filters then were


METHODS

placed in our device to run trials using a 3D printed frame (Figure 2). The Filtration Device: The filtration device is composed of two chambers connected with a gas blast (Figure 3). A CO₂ sensor was placed in each chamber. The chambers were secured and each was tested for leakage. The carbon filter was placed in the clean chamber. CO_2 was introduced to the polluted chamber using a CO₂ cartridge, and the concentration was collected.

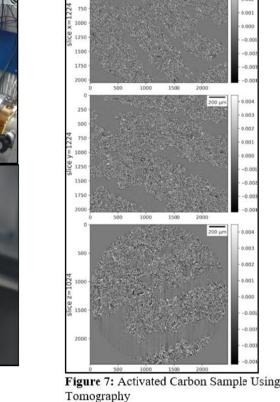
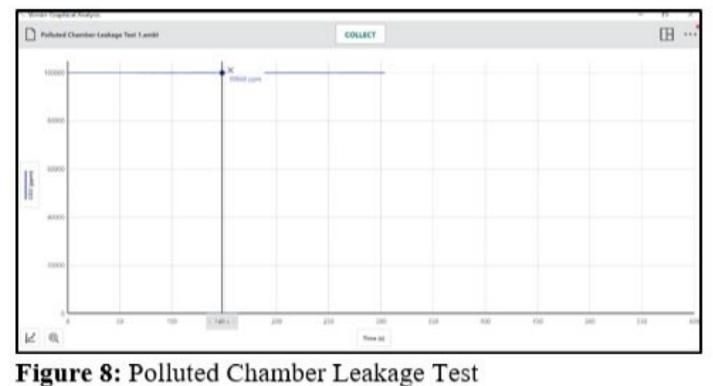



Figure 5: The Porosity of Activated Carbon-Coconut Shell Derived as shown Using a SEM

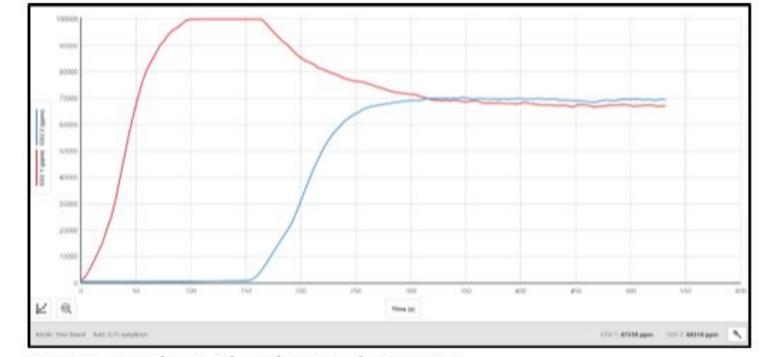
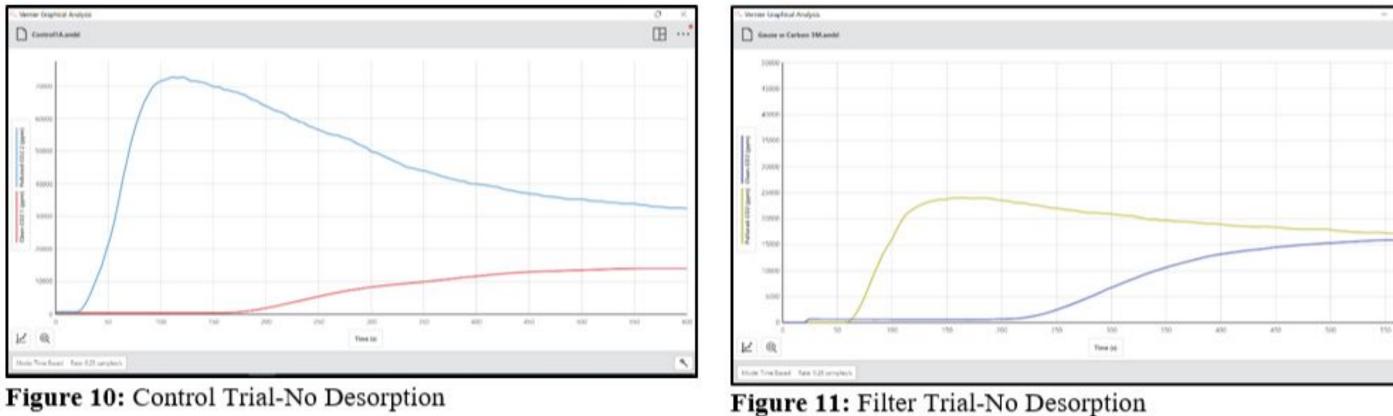



Figure 9: Clean Chamber Leakage Test

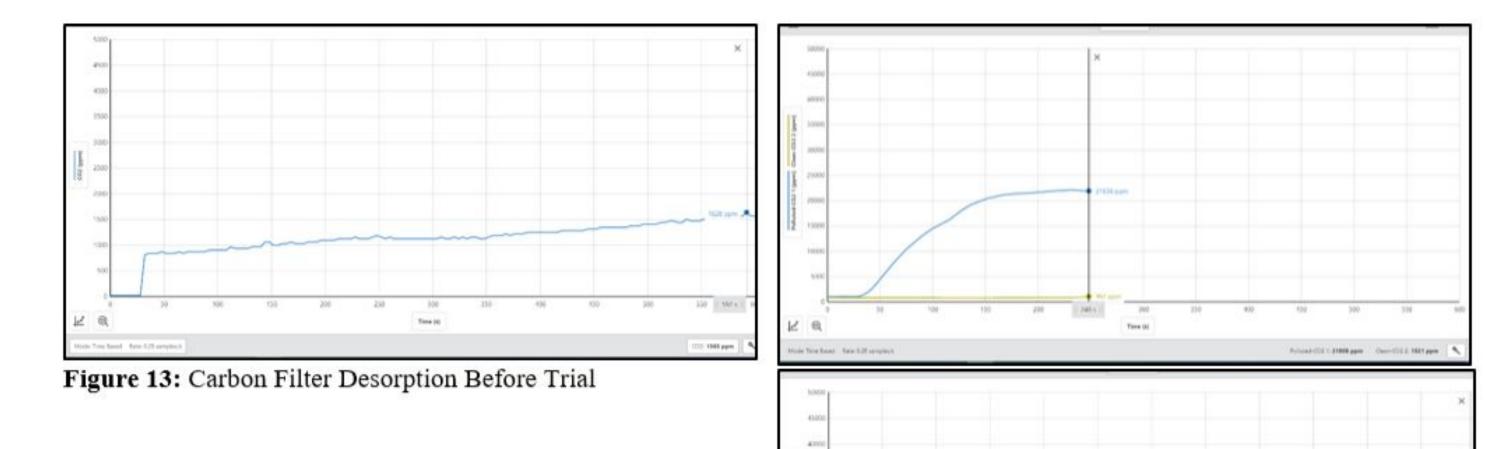


Figure 10: Control Trial-No Desorption

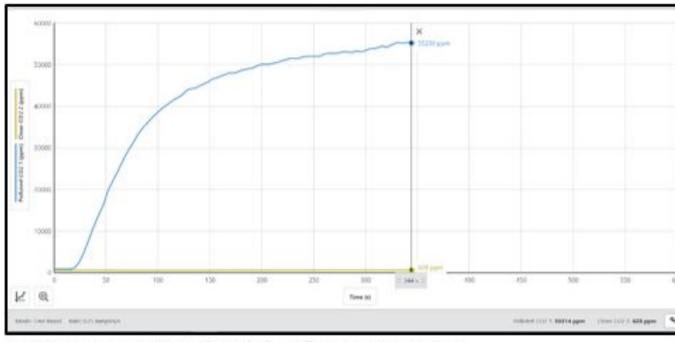
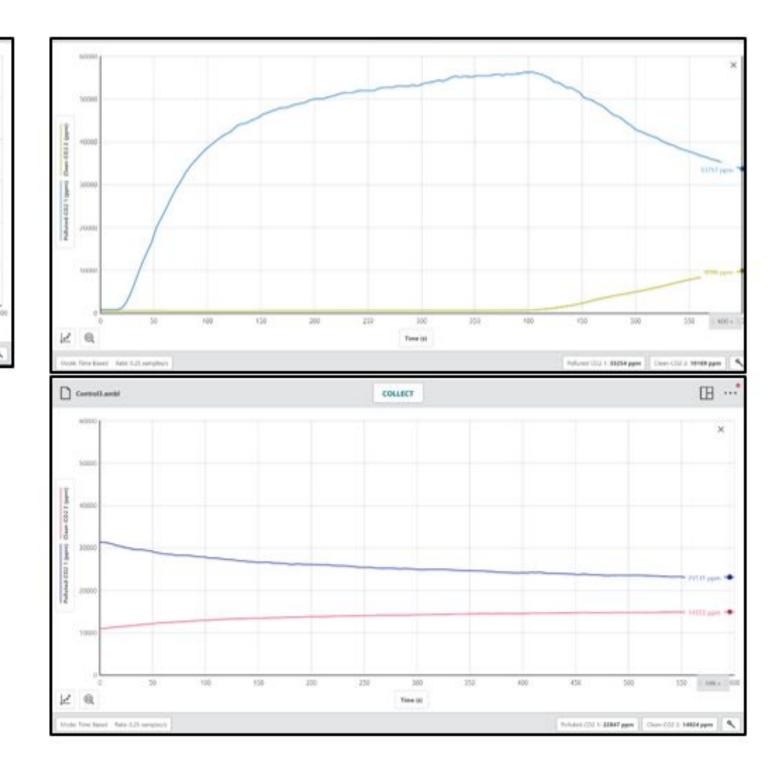



Figure 12: Control Trial-After Desorption

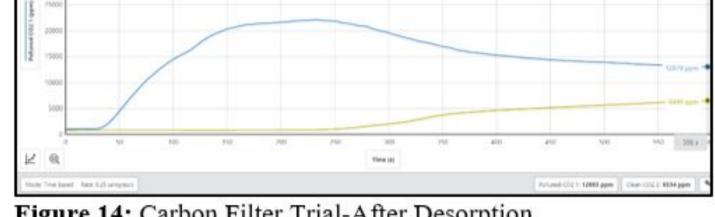


Figure 14: Carbon Filter Trial-After Desorption

- The samples tested at the lab (Figure 4 & 5) needed to be revised to ensure porosity. Gauze was used as a membrane instead of a binding substance (figure 2 & 3).
- The chambers' tests resulted in an insignificant leakage of less than <1% (Figure 8 & 9)
- Activated carbon filters tests demonstrated a significant amount of adsorbed CO₂. Filters needed to be desorbed before running further trials (Figure 10 & 11)
- Desorbed carbon filters worked at a higher efficiency compared to our control (Figures 12 -14). While the control blocked 14.9% of CO_2 introduced to the polluted chamber, the carbon filter blocked 31.3% of the CO₂ introduced within the first 20 minutes of running the experiment (Figure 15).

	Initial Difference in CO2 Concentration (ppm)	Final Difference in CO2 Concentration (ppm)	Percentage of CO ₂ Filtered
Control Sample (Desorbed Gauze)	55,230 - 344 = 54,886	23,131- 14,935 = 8,196	14.9%
Test Sample (Desorbed Activated Carbon Filter)	21,838 – 962 = 20,876	12,979 – 6,444 = 6,535	31.3%

Figure 15: Data Table. Percentage of CO₂ filtered at the end of 20 minutes of data collection.

CONCLUSIONS

- The filtration device presented an insignificant amount of leakage (<1%) of CO_2 .
- The filters needed to be desorbed before running trials.
- Desorbed carbon filters were able to adsorb CO₂ at a significantly higher percentage than the control.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

NEXT STEPS

- Manufacturing a practical filter to be able to test its efficiency over a longer duration of time is needed.
- Activated carbon filters ability to adsorb CO₂ will be compared to carbon nanotube filters.

Acknowledgements: This research was made possible through the Exemplary Student Research Program supported by Argonne National Laboratory APS and CNM, and the amazing scientists: Luca Rebuffi, Pavel Shevchenko, and Francesco De Carlo.

REFERENCES

[1] Kravchenko Julia, Lyerly Kim, The Impact of Coal Powered Electric Plants and Coal Ash Impoundments on the Health of Residential Communities, 79, 292-293 (2018) [2] Alam, J.; Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Tavker, N.; Choudhary, N.; Shukla, A.K.; Ali, F.A.A.; Alhoshan, M.; Hamid, A.A. Recent Advances in Methods for the Recovery of Carbon Nanominerals and Polyaromatic Hydrocarbons from Coal Fly Ash and Their Emerging Applications, 11, 88, 15-16 (2021) [3] Martin J. Sweetman, Steve May, Nick Mebberson, Phillip Pendleton, Krasimir Vasilev, Sally E. Plush, John D. Hayball, Activated Carbon, Carbon Nanotubes and Graphene: Materials and

Composites for Advanced Water Purification, 3, 18, 18-19, (2017)

[4] Shih-Cheng Hu, Angus Shiue, Shu-Mei Chang, Ya-Ting Chang, Chao-Heng Tseng, Chuang-Cheng Mao, Arson Hsieh, Andrew Chan, Removal of carbon dioxide in the indoor environment with sorption-type air filters, 12, 3, 330-334, (2016)

[5] Juan Manuel de Andrés, Luis Orjales, Adolfo Narros, María del Mar de la Fuente & María Encarnación Rodríguez, Carbon dioxide adsorption in chemically activated carbon from sewage sludge, Journal of the Air & Waste Management Association, 63, 5, 557-564, (2013) [6] Wagener, Laura. Climeworks: Where Carbon Capture Meets Greenhouse Fertiliser. RESET. Climate Protection, 2017.

[7]Pei-Hsing Huang, Hao-Hsiang Cheng, and Sheau-Horng Lin; Adsorption of Carbon Dioxide onto Activated Carbon Prepared from Coconut Shells (2015) [8] Kevin Bullis. Carbon Capture with Nanotubes, MIT Technology Review (2009) [9]Ruslan V. Mikhaylov. Temperature-programmed desorption of CO2, formed by CO photooxidation on TiO2 surface. Journal of Photochemistry and Photobiology A: Chemistry, 360, 1, 255-261, (2018)

