Skip to main content

energy efficiency

Below is a comprehensive list of articles, events, projects, references and research related content that is specific to the term described above. Use the filter to narrow the results further. To explore additional science and technology topics that Argonne researchers and engineers may be working on please visit our Research Index.

Filter Results

  • Electrochemical Energy Storage

    Electrochemical Energy Storage research and development programs span the battery technology field from basic materials research and diagnostics to prototyping and post-test analyses.
  • New high-capacity cathode materials with high lithium content that can act as a reservoir for lithium
    Intellectual Property Available to License
    US Patent 8,835,027
    • Positive Electrodes for Lithium Batteries (ANL-IN-06-037)

    The new materials have potential application in lithium-ion batteries with anodes such as graphite, graphene, and silicon. There is also potential application in batteries utilizing lithium metal anodes.

    In this invention, cathode precursors that contain a large amount of lithium can be extracted electrochemically at high potentials to load metal or metal alloy substrates with lithium. In one example, lithium and oxygen ions are released from the cathode during an initial preconditioning charge of the cell. This process leaves a structurally modified compound in the charged cathode that can react with lithium on a subsequent discharge. In principle, the preconditioning step (i.e., the initial charge reaction) is largely irreversible, whereas the second step (the initial charge reaction) can be either reversible or irreversible. This technology is available for license.

    Applications

    High capacity electrodes used in lithium batteries for:

    • Electric and plug-in hybrid electric vehicles;
    • Stationary energy storage devices;
    • Portable electronic devices;
    • Medical devices; and
    • Space, aeronautical, and defense-related devices.
  • A software modeling tool designed for policymakers and researchers
    Intellectual Property Available to License

    BatPaC is a software modeling tool designed for policymakers and researchers who are interested in estimating the cost of lithium-ion batteries after they have reached a mature state of development and are being manufactured in high volumes. The tool captures the interplay between the design and cost of these batteries for transportation applications.

    BatPaC comes with a library of several lithium-ion battery chemistries and default inputs for all the parameters specified in different manufacturing areas of a factory.

    Applications

    • Estimates the cost of manufacturing lithium-ion batteries
    • Examines trade-offs that result from different user requirements such as power, energy, charging time, etc.

    Features

    • Supports simulation and design with precise battery mass and dimensions, cost performance characteristics, and battery pack values from bench-scale results
    • Calculates battery pack-level quantities by adding together all the battery components that are designed to meet user-defined specifications
    • Determines the performance of a given battery chemistry/cell/pack design in batteries for four types of electric vehicle applications

    Technical Details/Requirements

    • Microsoft Excel-based application