Skip to main content

Intellectual Property

Below is a comprehensive list of articles, events, projects, references and research related content that is specific to the term described above. Use the filter to narrow the results further. To explore additional science and technology topics that Argonne researchers and engineers may be working on please visit our Research Index.

Filter Results

  • Using acoustic methods to locate and quantify leak locations on building envelopes
    Intellectual Property Available to License
    US Patent 9,939,343
    • Acoustic Building Infiltration Measurement System/Sonic Leak Quantifier (SonicLQ) (ANL-IN-14-001)

    Building infiltration – the uncontrolled leakage of air in and out of a building envelope – accounts for a significant portion of the heating and cooling energy for buildings and is estimated to account for nearly 4% of all energy use in the United States. Infiltration can be measured on residential and small commercial buildings using whole building pressurization (blower door) testing after construction is complete, but there is no affordable method for testing larger buildings while under construction or when construction is complete. While building energy codes are changing to set maximum limits of infiltration on new construction, the code changes will not require testing of new commercial construction because of the difficulty involved.

    The Acoustic Building Infiltration Measurement System (ABIMS) uses acoustic methods to locate and quantify leak locations on building envelopes. It can be used for buildings of all sizes and can be used while the envelope is still under construction. The technology should allow future commercial building energy code to require infiltration testing on commercial building and allow for affordable quantification of the energy savings benefits of weatherization and infiltration sealing of commercial buildings.

    The ABIMS system is being commercialized under the name Sonic Leak Quantifier or SonicLQ. SonicLQ recently won funding from the DOE Lab Corp program to help support commercialization of the technology.

  • Increased performance and stability
    Intellectual Property Available to License
    US Patent 7,871,738 B2
    • Nanosegregated surfaces as catalysts for fuel cells
    Schematic illustration of the nanosegregated Pt(111)-Skin near surface atomic layers with oscillatory compositional profile.

    The Invention 

    Scientists at Argonne National Laboratory have developed a method for creating a new class of platinum multi-metallic catalysts that are not only compositionally stable but also exhibit an advantageous electronic structure with enhanced catalytic properties. 

    Using this process, researchers created an alloy of platinum and one or more transition metals (such as cobalt, nickel, iron, titanium, chromium and others). Next, they modified the near surface layers by annealing, which induces formations known as nanosegregated surfaces. These surfaces vastly improve performance by overcoming kinetic limitations for the oxygen reduction reaction. The result is a catalyst particularly advantageous for use in polymer electrolyte fuel cells. 

    In the energy industry, fuel cells are rapidly becoming an important component. However, the high cost of manufacturing the platinum catalyst—a required element in a fuel cell—makes fuel cells relatively non-competitive in the commercial world. So far, such catalysts have not been able to demonstrate the performance and life expectancy consistent with a fuel cell’s long-term operation. Argonne’s invention overcomes this limitation. 

    Benefits 

    • Enhanced catalytic properties that drive improved performance, 
    • Greater stability 
    • Greater cost-effectiveness 

    Applications and Industries 

    • Polymer electrolyte membrane fuel cells 
    • Energy storage devices, such as metal-air batteries 
    • Magnetic storage devices 
    • Automotive industry 

    Developmental Stage 

    Proof of concept 

  • William D. Ingle III

    Bill Ingle works predominately with Argonne’s Energy Systems Division, providing support related to collaborations with private industry and other non-Department of Energy organizations.
  • Licensable Software

    Argonne has created a wealth of powerful software and models with broad-ranging applications, such as simulation and modeling, computation, Internet usage, and more.
    Researchers at Argonne National Laboratory are working on optimization models that use machine learning, a form of artificial intelligence, to simulate the electric system and the severity of various problems. In a region with 1,000 electric power assets, an outage of just three assets can produce nearly a billion scenarios of potential failure. Image by urbans/Shutterstock.com.
  • Simulation tool that can perform deterministic transient safety analysis of anticipated operational events, as well as design-basis and beyond-design-basis accidents for advanced nuclear reactors
    Intellectual Property Available to License

    Argonne’s SAS4A/SASSYS-1 safety analysis code system is a simulation tool that can perform deterministic transient safety analysis of anticipated operational events, as well as design-basis and beyond-design-basis accidents for advanced nuclear reactors. The original code development was for sodium-cooled fast reactors, and sodium boiling can be modeled. However, basic core thermal-hydraulics and systems analysis features are applicable to other liquid-metal cooled reactor concepts.

    Applications

    • Safety analysis of fast reactors
    • Simulations for operational, design-basis and beyond-design-basis events
    • Passive heat removal and natural circulation flow predictions
    • Severe accident modeling with sodium boiling, fuel melting and pin failure

    Features

    The current version (version 5) features:

    • Detailed code manual
    • Single-pin assembly models for rapid evaluation of transients
    • Detailed thermal-hydraulic sub-channel models for subassembly pin bundles
    • Support for three-dimensional visualization of sub-channel temperatures
    • Support for liquid-metal coolants such as sodium, NaK, lead and LBE, as well as other single-phase coolants
    • Full-plant coolant system models to simulate passive heat removal and natural shutdown
    • Oxide fuel models for fuel melting, in-pin motion, pin failure, and ex-pin fuel dispersal and freezing
    • Metal fuel models for fuel-clad eutectic formation and cladding failure
    • High-fidelity decay heat models
    • Built-in support for ANS standard decay heat properties
    • Built-in support for alternative coolants in decay heat removal loops
    • Support for line-based comments in input files
    • Support for an unlimited number of time steps
    • Support for coupling to third-party computational fluid dynamics tools (such as STAR-CCM+) for representing thermal stratification in large volumes
    • Support for coupling to DIF3D-K for reactor spatial kinetics

    Technical Details/Requirements

    • Executable versions are available for Linux, Mac OS X and Windows
    • Source code is compliant with Fortran 90/95 free-formatted source format and can be compiled on a variety of operating systems including Unix, Linux, Mac OS X and Windows. A standards-compliant Fortran compiler is required.
  • No other fast spectrum multigroup generation tool matches the demonstrated accuracy of MC2-3
    Intellectual Property Available to License

    It generates broad-group, cell-average microscopic cross sections from ENDF/B basic nuclear data.

    MC2-3 handles the complicated resonance self-shielding in fast spectrum systems by directly accounting for the resonance interactions in detail and performing calculations (2082 ultrafine group + 400,000 hyperfine group) on conventional lattice cells or simplified R-Z core models. The resulting microscopic cross sections are used for fast reactor design and analysis calculations.

    Applications

    • Nuclear fast reactor simulations and analysis

    Features

    • Code library includes almost all isotopes of the ENDF/B-VII data.
    • Resolved resonance self-shielding using the numerical integration of pointwise cross sections based on the narrow resonance approximation
    • Unresolved resonance self-shielding using the generalized integral method with the increased number of energy grids
    • Anisotropic inelastic scattering
    • 1-Dimensional (1-D) transport calculation using ultrafine or hyperfine groups
    • Improved equivalence theory for the 1D heterogeneity effect in resonance self-shielding
    • Efficient algorithm for solving the hyperfine group transport equation
    • Option to use 2-D transport solutions (TWODANT) for group condensation
    • Fortran 90/95 memory structure
    • Keyword-based input system and built-in data conversion capability

    Technical Details/Requirements

    Developed using the Compaq Visual Fortran on the Microsoft Windows operating system (OS), the MC2-3 code can be installed and executed on the Windows, Macintosh, Unix and Linux OS environments. The memory requirements depend upon the problem. The current version requires more than 1G byte of memory. The memory management system in the current version does not use scratch files to save memory. Thus, more than 4G byte of memory may be required for large problems with many isotopes, hyperfine groups, and/or one-dimensional geometry. A Fortran compiler is required to compile the included source code. Minor changes may be required for code compilation.

    The software is written in Fortran 90/95 and can be run on a variety of operating systems including Unix, Linux, Mac OS and Windows. The software includes comments in the source code and the method/user/programmer manual with several examples. An engineer with neutronics experience can learn to run the code in anywhere from a day to a week.