Skip to main content

Licenses

Below is a comprehensive list of articles, events, projects, references and research related content that is specific to the term described above. Use the filter to narrow the results further. To explore additional science and technology topics that Argonne researchers and engineers may be working on please visit our Research Index.

Filter Results

  • Environmental Science

    Argonne provides the nation with rigorous science and engineering analyses about the present and possible future state of the environment.
    Environment
  • Security and Infrastructure

    Teams at Argonne are developing scientific and technical national security solutions to address complex problems that threaten safety and stability throughout the world.
  • Information and Computer Systems

    Argonne’s innovations are focused on solving the most challenging scientific/technical problems through high-performance computing, data analysis, artificial intelligence, and advanced modeling and simulation
  • Hydrogen and Fuel Cells

    Argonne’s fuel cell research extends from nanometer scale to components and systems and is focused on performance, durability and cost.
  • Nuclear Science and Engineering

    Argonne advances the design and operation of nuclear energy systems and applies nuclear energy expertise to current and emerging programs of national and international significance.
    Nuclear Power Plant
  • Method to characterize nanofiber assemblies from images
    Intellectual Property Available to License

    US Patent 9,639,926 B1
    • Image processing tool for automatic feature recognition and quantification

    A system for defining structures within an image is described. The system includes reading of an input file, preprocessing the input file while preserving metadata such as scale information and then detecting features of the input file. In one version the detection first uses an edge detector followed by identification of features using a Hough transform. The output of the process is identified elements within the image.

  • Process to make advanced power electronic devices with high permittivity and low dielectric loss
    Intellectual Property Available to License

    US Patent 9,679,705 B2
    • Method for fabrication of ceramic dielectric films on copper foils (IN-09-006B)

    The present invention provides copper substrate coated with a lead-lanthanum-zirconium-titanium (PLZT) ceramic film, which is prepared by a method comprising applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250° C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450° C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750° C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas.

  • A high-resolution, active-optic X-ray fluorescence analyzer combining a large acceptance solid angle with wide energy tunability
    Intellectual Property Available to License
    US Patent 8,130,902B2
    • High-Resolution, Active-Optic X-Ray Fluorescence Analyzer (IN-06-085)

    Active optics apparatus and method for aligning active optics are provided for a high-resolution, active optic fluorescence analyzer combining a large acceptance solid angle with wide energy tunability. A plurality of rows of correctors selectively controlled to bend an elongated strip of single crystal material like Si (400) into substantially any precisely defined shape. A pair of pushers engages opposite ends of the silicon crystal strip exert only a force along the long axis of the crystal strip, and does not induce additional bending moments which would result in a torsion of the crystal.

  • SVTRIP generates a naturalistic vehicle speed profile for a given route, which can be used to predict vehicle energy consumption and operations.
    Intellectual Property Available to License

    SVTRIP (Stochastic Vehicle Trip Prediction) generates a naturalistic vehicle speed profile (vehicle speed as a function of time at 1 Hz or more) for a given trip or route. The trip provided as an input is defined by the attributes of its sub-segments, such as travel time, distance and speed limit. The inputs can be provided directly by the user, extracted from digital maps, or generated from macroscopic or mesoscopic traffic flow simulators. The generated speed profiles can be used to predict vehicle energy consumption and operations for trips with low-resolution information. The algorithm used for generation relies on Markov Chains, making the generated speed profiles stochastic.