Skip to main content

energy efficiency

Below is a comprehensive list of articles, events, projects, references and research related content that is specific to the term described above. Use the filter to narrow the results further. To explore additional science and technology topics that Argonne researchers and engineers may be working on please visit our Research Index.

Filter Results

  • Bikeshare Program

    Argonne’s Bikeshare program provides a fun and eco-friendly option to travel around the laboratory site.  It improves local air quality, reduces fuel use, and promotes wellness in the workplace.
    Argonne Bikeshare Program
  • Water Management

    Water resources play an integral role in providing world-class research facilities at Argonne.
  • Using acoustic methods to locate and quantify leak locations on building envelopes
    Intellectual Property Available to License
    US Patent 9,939,343
    • Acoustic Building Infiltration Measurement System/Sonic Leak Quantifier (SonicLQ) (ANL-IN-14-001)

    Building infiltration – the uncontrolled leakage of air in and out of a building envelope – accounts for a significant portion of the heating and cooling energy for buildings and is estimated to account for nearly 4% of all energy use in the United States. Infiltration can be measured on residential and small commercial buildings using whole building pressurization (blower door) testing after construction is complete, but there is no affordable method for testing larger buildings while under construction or when construction is complete. While building energy codes are changing to set maximum limits of infiltration on new construction, the code changes will not require testing of new commercial construction because of the difficulty involved.

    The Acoustic Building Infiltration Measurement System (ABIMS) uses acoustic methods to locate and quantify leak locations on building envelopes. It can be used for buildings of all sizes and can be used while the envelope is still under construction. The technology should allow future commercial building energy code to require infiltration testing on commercial building and allow for affordable quantification of the energy savings benefits of weatherization and infiltration sealing of commercial buildings.

    The ABIMS system is being commercialized under the name Sonic Leak Quantifier or SonicLQ. SonicLQ recently won funding from the DOE Lab Corp program to help support commercialization of the technology.

  • Increased performance and stability
    Intellectual Property Available to License
    US Patent 7,871,738 B2
    • Nanosegregated surfaces as catalysts for fuel cells
    Schematic illustration of the nanosegregated Pt(111)-Skin near surface atomic layers with oscillatory compositional profile.

    The Invention 

    Scientists at Argonne National Laboratory have developed a method for creating a new class of platinum multi-metallic catalysts that are not only compositionally stable but also exhibit an advantageous electronic structure with enhanced catalytic properties. 

    Using this process, researchers created an alloy of platinum and one or more transition metals (such as cobalt, nickel, iron, titanium, chromium and others). Next, they modified the near surface layers by annealing, which induces formations known as nanosegregated surfaces. These surfaces vastly improve performance by overcoming kinetic limitations for the oxygen reduction reaction. The result is a catalyst particularly advantageous for use in polymer electrolyte fuel cells. 

    In the energy industry, fuel cells are rapidly becoming an important component. However, the high cost of manufacturing the platinum catalyst—a required element in a fuel cell—makes fuel cells relatively non-competitive in the commercial world. So far, such catalysts have not been able to demonstrate the performance and life expectancy consistent with a fuel cell’s long-term operation. Argonne’s invention overcomes this limitation. 

    Benefits 

    • Enhanced catalytic properties that drive improved performance, 
    • Greater stability 
    • Greater cost-effectiveness 

    Applications and Industries 

    • Polymer electrolyte membrane fuel cells 
    • Energy storage devices, such as metal-air batteries 
    • Magnetic storage devices 
    • Automotive industry 

    Developmental Stage 

    Proof of concept 

  • Positive electrodes for secondary batteries containing lithium source material
    Intellectual Property Available to License
    US Patent 9,012,091 and US Patent 9,478,794
    • Electroactive Materials for Rechargeable Batteries (ANL-IN-12-086)
    • Method to compensate anode for initial irreversible capacity loss 
    • Enables lithium- deficient cathode materials through lithium source 

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

     

     

  • Unique carbon-coated cathodes that improve electrical conductivity
    Intellectual Property Available to License
    US Patent 9,431,649
    • Coating Active Materials for Applications in Electrochemical Devices (ANL-IN-09-043)

    The Invention 

    X-ray diffraction graph of coated (10%) and uncoated Li1.2Mn0.5Ni0.176Co0.1O2.

    A process that includes suspending/dissolving an electro-active material and a carbon precursor in a solvent; and then depositing the carbon precursor on the electro-active material to form a carbon-coated electro-active material. 

    The method avoids the high temperature, pressure and manufacturing extremes of conventional chemical vapor deposition and other pyrolysis methods of preparation. When carbon-coated metal oxides (for electro-active materials) are prepared, the metal oxide often reduces to the metal species. Argonne’s method can produce carbon-coated metal oxides without the problems associated with reductions. The carbon precursor can be graphene, graphene oxide, carbon nanotubes, their derivatives or a combination of any two or more such carbon precursors. 

    Benefits 

    • Carbon-coated materials can be charged and discharged faster than non-coated materials. 
    • Using this method, the metal oxide will not reduce to the metal species when coated with carbon. 
    • Carbon-coated cathode materials have improved electronic conductivity. 
    • With its high capacity and high current rate, carbon-coated materials are ideal for use in lithium batteries for plug-in and electric vehicles. 

    Applications and Industries 

    Coatings for electrodes used in batteries for 

    • Electric and plug-in hybrid electric vehicles; 
    • Portable electronic devices; 
    • Medical devices; and 
    • Space, aeronautical, and defense-related devices. 

    Developmental Stage 

    Proof of concept