Skip to main content

Electronics

Argonne maintains a wide-ranging science and technology portfolio that seeks to address complex challenges in interdisciplinary and innovative ways. Below is a list of all articles, highlights, profiles, projects, and organizations related specifically to electronics.

Filter Results

  • A source cold cathode field emission array (FEA) source based on ultra-nanocrystalline diamond (UNCD) field emitters
    Intellectual Property Available to License
    US Patent 9,299,526
    • Method to Fabricate Portable Electron Source Based on Nitrogen Incorporated Ultrananocrystalline Diamond (N-UNCD) (ANL-IN-14-019)

    This system was constructed as an alternative for detection of obscured objects and material. Depending on the geometry of the given situation a flat-panel source can be used in tomography, radiography, or tomosynthesis. Furthermore, the unit can be used as a portable electron or X-ray scanner or an integral part of an existing detection system. UNCD field emitters show great field emission output and can be deposited over large areas as the case with carbon nanotube forest” (CNT) cathodes. Furthermore, UNCDs have better mechanical and thermal properties as compared to CNT tips which further extend the lifetime of UNCD based FEA.

    Benefits

    • Prototype based on nitrogen incorporated ultrananocrystalline diamond film 
    • Emission current densities of the order of 6mA/cm2 could be obtained at electric fields as low as 10 V/lm to 20V/lm 

     

  • Excellent chemical, mechanical and electrical properties, low intrinsic stress gradient 
    Intellectual Property Available to License
    US Patent 9,475,690
    • Fabrication of Robust, Harsh Environment Compatible MEMS/NEMS Actuators Based on Electrically Conducting Diamond Films (ANL-IN-14-009)

    Nanocrystalline diamond coatings exhibit stress in nano/micro-electro mechanical systems (MEMS). Doped nanocrstalline diamond coatings exhibit increased stress. A carbide forming metal coating reduces the in-plane stress. In addition, without any metal coating, simply growing UNCD or NCD with thickness in the range of 3-4 micron also reduces in-plane stress significantly. Such coatings can be used in MEMS applications.

    Benefits

    • Excellent chemical, mechanical and electrical properties, low intrinsic stress gradient 
    • Could be applicable in many fields, including bio-medicine, optics, and sensors and actuators for space applications 
  • A method of forming electrical contacts on a diamond substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases
    Intellectual Property Available to License
    ULTRA-NANO CRYSTALLINE DIAMOND CONTACTS FOR DIAMOND ELECTRONIC DEVICES
    • ANL-IN-12-098 entitled ULTRA-NANO CRYSTALLINE DIAMOND CONTACTS FOR DIAMOND ELECTRONIC DEVICES

    The mixture of gases include a source of a p-type or an n-type dopant. The plasma ball is disposed at a first distance from the diamond substrate. The diamond substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the diamond substrate for a first time, and a UNCD film, which is doped with at least one of a p-type dopant and an n-type dopant, is disposed on the diamond substrate. The doped UNCD film is patterned to define UNCD electrical contacts on the diamond substrate.

    Benefits

    • Efficient x-ray position detector for synchrotron applications 
  • Efficient, p-n junction diodes for power electronics and rectification applications
    Intellectual Property Available to License
    US Patent 10,186,584
    • Fabrication of P-N Junction Device Through Diamond/2D Materials Heterojunction (ANL-IN-15-097)

    A method of forming a p-n junction device comprises providing a base layer including a p-type diamond. A monolayer or few layer of a transition metal dichalcogenide (TMDC) is disposed on at least a portion of the base layer so as to form a heterojunction therebetween. The TMDC monolayer is an n-type layer such that the heterojunction between the intrinsic and p-type diamond base layer and the n-type TMDC monolayer is a p-n junction.

    Benefits

    • Efficient, p-n junction diodes for power electronics and rectification applications